Copied to
clipboard

G = C33⋊(C4⋊C4)  order 432 = 24·33

The semidirect product of C33 and C4⋊C4 acting via C4⋊C4/C2=C2×C4

metabelian, soluble, monomial

Aliases: C331(C4⋊C4), C335C42C4, Dic3⋊(C32⋊C4), C3⋊S3.3Dic6, (C32×Dic3)⋊2C4, C327(Dic3⋊C4), (C3×C3⋊S3).8D4, C2.5(S3×C32⋊C4), C6.3(C2×C32⋊C4), (C3×C3⋊S3).2Q8, (C3×C6).28(C4×S3), (C2×C3⋊S3).26D6, (C2×C32⋊C4).1S3, (C6×C32⋊C4).1C2, C32(C4⋊(C32⋊C4)), C3⋊S3.6(C3⋊D4), (C6×C3⋊S3).3C22, (Dic3×C3⋊S3).4C2, (C32×C6).3(C2×C4), (C2×C33⋊C4).2C2, SmallGroup(432,569)

Series: Derived Chief Lower central Upper central

C1C32×C6 — C33⋊(C4⋊C4)
C1C3C33C3×C3⋊S3C6×C3⋊S3Dic3×C3⋊S3 — C33⋊(C4⋊C4)
C33C32×C6 — C33⋊(C4⋊C4)
C1C2

Generators and relations for C33⋊(C4⋊C4)
 G = < a,b,c,d,e | a3=b3=c3=d4=e4=1, ab=ba, ac=ca, dad-1=a-1, eae-1=ab-1, bc=cb, dbd-1=b-1, ebe-1=a-1b-1, dcd-1=c-1, ce=ec, ede-1=d-1 >

Subgroups: 704 in 96 conjugacy classes, 22 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C2×C4, C32, C32, Dic3, Dic3, C12, D6, C2×C6, C4⋊C4, C3×S3, C3⋊S3, C3×C6, C3×C6, C4×S3, C2×Dic3, C2×C12, C33, C3×Dic3, C3⋊Dic3, C3×C12, C32⋊C4, S3×C6, C2×C3⋊S3, Dic3⋊C4, C3×C3⋊S3, C32×C6, S3×Dic3, C4×C3⋊S3, C2×C32⋊C4, C2×C32⋊C4, C32×Dic3, C335C4, C3×C32⋊C4, C33⋊C4, C6×C3⋊S3, C4⋊(C32⋊C4), Dic3×C3⋊S3, C6×C32⋊C4, C2×C33⋊C4, C33⋊(C4⋊C4)
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Q8, D6, C4⋊C4, Dic6, C4×S3, C3⋊D4, C32⋊C4, Dic3⋊C4, C2×C32⋊C4, C4⋊(C32⋊C4), S3×C32⋊C4, C33⋊(C4⋊C4)

Character table of C33⋊(C4⋊C4)

 class 12A2B2C3A3B3C3D3E4A4B4C4D4E4F6A6B6C6D6E6F6G12A12B12C12D12E12F12G12H
 size 119924488618185454542448818181212121218181818
ρ1111111111111111111111111111111    trivial
ρ2111111111-111-1-1-11111111-1-1-1-11111    linear of order 2
ρ3111111111-1-1-111-11111111-1-1-1-1-1-1-1-1    linear of order 2
ρ41111111111-1-1-1-1111111111111-1-1-1-1    linear of order 2
ρ511-1-111111-1i-i-ii111111-1-1-1-1-1-1i-ii-i    linear of order 4
ρ611-1-1111111i-ii-i-111111-1-11111i-ii-i    linear of order 4
ρ711-1-1111111-ii-ii-111111-1-11111-ii-ii    linear of order 4
ρ811-1-111111-1-iii-i111111-1-1-1-1-1-1-ii-ii    linear of order 4
ρ92222-122-1-10-2-2000-122-1-1-1-100001111    orthogonal lifted from D6
ρ102-2-2222222000000-2-2-2-2-22-200000000    orthogonal lifted from D4
ρ112222-122-1-1022000-122-1-1-1-10000-1-1-1-1    orthogonal lifted from S3
ρ122-22-222222000000-2-2-2-2-2-2200000000    symplectic lifted from Q8, Schur index 2
ρ132-22-2-122-1-10000001-2-2111-1000033-3-3    symplectic lifted from Dic6, Schur index 2
ρ142-22-2-122-1-10000001-2-2111-10000-3-333    symplectic lifted from Dic6, Schur index 2
ρ1522-2-2-122-1-10-2i2i000-122-1-1110000i-ii-i    complex lifted from C4×S3
ρ1622-2-2-122-1-102i-2i000-122-1-1110000-ii-ii    complex lifted from C4×S3
ρ172-2-22-122-1-10000001-2-211-110000--3-3-3--3    complex lifted from C3⋊D4
ρ182-2-22-122-1-10000001-2-211-110000-3--3--3-3    complex lifted from C3⋊D4
ρ1944004-211-2-40000041-21-2002-1-120000    orthogonal lifted from C2×C32⋊C4
ρ20440041-2-21-4000004-21-2100-122-10000    orthogonal lifted from C2×C32⋊C4
ρ21440041-2-214000004-21-21001-2-210000    orthogonal lifted from C32⋊C4
ρ2244004-211-240000041-21-200-211-20000    orthogonal lifted from C32⋊C4
ρ234-40041-2-21000000-42-12-1003i00-3i0000    complex lifted from C4⋊(C32⋊C4)
ρ244-4004-211-2000000-4-12-12000-3i3i00000    complex lifted from C4⋊(C32⋊C4)
ρ254-40041-2-21000000-42-12-100-3i003i0000    complex lifted from C4⋊(C32⋊C4)
ρ264-4004-211-2000000-4-12-120003i-3i00000    complex lifted from C4⋊(C32⋊C4)
ρ278800-42-42-1000000-4-422-10000000000    orthogonal lifted from S3×C32⋊C4
ρ288800-4-42-12000000-42-4-120000000000    orthogonal lifted from S3×C32⋊C4
ρ298-800-42-42-100000044-2-210000000000    symplectic faithful, Schur index 2
ρ308-800-4-42-120000004-241-20000000000    symplectic faithful, Schur index 2

Smallest permutation representation of C33⋊(C4⋊C4)
On 48 points
Generators in S48
(5 34 29)(6 30 35)(7 36 31)(8 32 33)(21 37 46)(22 47 38)(23 39 48)(24 45 40)
(1 16 17)(2 18 13)(3 14 19)(4 20 15)(5 34 29)(6 30 35)(7 36 31)(8 32 33)(9 25 42)(10 43 26)(11 27 44)(12 41 28)(21 37 46)(22 47 38)(23 39 48)(24 45 40)
(1 17 16)(2 13 18)(3 19 14)(4 15 20)(5 29 34)(6 35 30)(7 31 36)(8 33 32)(9 25 42)(10 43 26)(11 27 44)(12 41 28)(21 37 46)(22 47 38)(23 39 48)(24 45 40)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 47 43 8)(2 46 44 7)(3 45 41 6)(4 48 42 5)(9 29 15 23)(10 32 16 22)(11 31 13 21)(12 30 14 24)(17 38 26 33)(18 37 27 36)(19 40 28 35)(20 39 25 34)

G:=sub<Sym(48)| (5,34,29)(6,30,35)(7,36,31)(8,32,33)(21,37,46)(22,47,38)(23,39,48)(24,45,40), (1,16,17)(2,18,13)(3,14,19)(4,20,15)(5,34,29)(6,30,35)(7,36,31)(8,32,33)(9,25,42)(10,43,26)(11,27,44)(12,41,28)(21,37,46)(22,47,38)(23,39,48)(24,45,40), (1,17,16)(2,13,18)(3,19,14)(4,15,20)(5,29,34)(6,35,30)(7,31,36)(8,33,32)(9,25,42)(10,43,26)(11,27,44)(12,41,28)(21,37,46)(22,47,38)(23,39,48)(24,45,40), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,47,43,8)(2,46,44,7)(3,45,41,6)(4,48,42,5)(9,29,15,23)(10,32,16,22)(11,31,13,21)(12,30,14,24)(17,38,26,33)(18,37,27,36)(19,40,28,35)(20,39,25,34)>;

G:=Group( (5,34,29)(6,30,35)(7,36,31)(8,32,33)(21,37,46)(22,47,38)(23,39,48)(24,45,40), (1,16,17)(2,18,13)(3,14,19)(4,20,15)(5,34,29)(6,30,35)(7,36,31)(8,32,33)(9,25,42)(10,43,26)(11,27,44)(12,41,28)(21,37,46)(22,47,38)(23,39,48)(24,45,40), (1,17,16)(2,13,18)(3,19,14)(4,15,20)(5,29,34)(6,35,30)(7,31,36)(8,33,32)(9,25,42)(10,43,26)(11,27,44)(12,41,28)(21,37,46)(22,47,38)(23,39,48)(24,45,40), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,47,43,8)(2,46,44,7)(3,45,41,6)(4,48,42,5)(9,29,15,23)(10,32,16,22)(11,31,13,21)(12,30,14,24)(17,38,26,33)(18,37,27,36)(19,40,28,35)(20,39,25,34) );

G=PermutationGroup([[(5,34,29),(6,30,35),(7,36,31),(8,32,33),(21,37,46),(22,47,38),(23,39,48),(24,45,40)], [(1,16,17),(2,18,13),(3,14,19),(4,20,15),(5,34,29),(6,30,35),(7,36,31),(8,32,33),(9,25,42),(10,43,26),(11,27,44),(12,41,28),(21,37,46),(22,47,38),(23,39,48),(24,45,40)], [(1,17,16),(2,13,18),(3,19,14),(4,15,20),(5,29,34),(6,35,30),(7,31,36),(8,33,32),(9,25,42),(10,43,26),(11,27,44),(12,41,28),(21,37,46),(22,47,38),(23,39,48),(24,45,40)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,47,43,8),(2,46,44,7),(3,45,41,6),(4,48,42,5),(9,29,15,23),(10,32,16,22),(11,31,13,21),(12,30,14,24),(17,38,26,33),(18,37,27,36),(19,40,28,35),(20,39,25,34)]])

Matrix representation of C33⋊(C4⋊C4) in GL6(𝔽13)

100000
010000
0000120
00012012
0010120
000100
,
100000
010000
0002121
0012112
0011122
0011110
,
12120000
100000
001000
000100
000010
000001
,
420000
1190000
0002121
000100
00121012
00012012
,
1190000
420000
0011201
0001200
0012000
00122120

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,12,0,1,0,0,12,0,12,0,0,0,0,12,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,0,0,2,2,1,11,0,0,12,11,12,1,0,0,1,2,2,0],[12,1,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,11,0,0,0,0,2,9,0,0,0,0,0,0,0,0,12,0,0,0,2,1,1,12,0,0,12,0,0,0,0,0,1,0,12,12],[11,4,0,0,0,0,9,2,0,0,0,0,0,0,1,0,12,12,0,0,12,12,0,2,0,0,0,0,0,12,0,0,1,0,0,0] >;

C33⋊(C4⋊C4) in GAP, Magma, Sage, TeX

C_3^3\rtimes (C_4\rtimes C_4)
% in TeX

G:=Group("C3^3:(C4:C4)");
// GroupNames label

G:=SmallGroup(432,569);
// by ID

G=gap.SmallGroup(432,569);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,56,141,36,1411,298,1356,1027,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^4=e^4=1,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,e*a*e^-1=a*b^-1,b*c=c*b,d*b*d^-1=b^-1,e*b*e^-1=a^-1*b^-1,d*c*d^-1=c^-1,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

Export

Character table of C33⋊(C4⋊C4) in TeX

׿
×
𝔽